
Database administration tutorial
for non-DBAs
Patrick Lambert
[http://dendory.net]

November 7, 2014

Abstract

This tutorial will show you the basics of administering, config-
uring, querying and troubleshooting SQL databases in a profes-
sional environment, and is aimed at people with no formal database
administration background who are thrust into that role. We will
mostly focus on the MS SQL Server and MySQL engines.



Database administration tutorial for non-DBAs 1

1 Introduction

Database administrators (DBAs) are in high demand these days. With
big data being what it is, every organization has more and more stuff
to index, catalog, process and interact with. Each situation is different,
but typically that involves working with databases. Large enterprises
will typically hire one or more DBAs to handle the administration. This is
good, because that way a single point of contact can be reached and is
responsible for the continued operation of the organization's database
systems, typically the life blood of the organization. In many places
these days, if the database goes down, operations halt across the board.

But this is the ideal situation. In reality, things rarely happen that
way. Many organizations aren't large enough to warrant a full time
DBA, or they want to save a few bucks and ask a random IT pro to
handle databases as a side project, regardless of how crucial that task
is. Perhaps that IT person is you, and this is what this tutorial aims
to address. For most tasks, you don't need a college degree to work
with databases. By the end of this tutorial you should have the skills
to select a database, install it, configure it according to your needs, do
basic queries and administration tasks, and some troubleshooting.

1.1 Audience

This document was written for non-DBAs because I was in that situa-
tion myself. With no formal database administration training, I worked
with dozens of different databases throughout my IT career for various
projects, from web back-ends to application databases and big data
processing, so I decided to write this document for people who are in
the same situation, since that seems to happen so often, even in places
you would not suspect.

Perhaps you're working as a help desk person, and a project manager
comes to you needing a database set up for a new project. Maybe you're
training to become an IT professional but the position you apply to also
requires some database experience. Or maybe you're not even in the
IT field, let's say a financial guru, but suddenly find yourself having to
deal with a large amount of data, with no one to help you set up a
structured system to manage all that data, and you want to learn how
to do it by yourself.

This tutorial assumes no previous database experience. It does how-
ever assume some computer knowledge, namely the ability to download
and install a software application, and the ability to start and stop sys-



Database administration tutorial for non-DBAs 2

tem processes or services. We will mostly cover Windows and Linux
setups, but this could be applied to any back-end system as well.

1.2 Disclaimer

As I mentioned before, I have no formal database education. This
document is based on over 15 years of real world experience and fo-
cuses on real scenarios you may encounter yourself. However, I do not
claim to be the foremost expert on the subject. All information here
is provided as-is, with no warranty of fitness for a particular use. Your
mileage may vary.

We will also not cover advanced topics such as database clustering
or disaster recovery. If your organization depends on the database
running to keep the lights on, you probably want a proper DBA, which
is outside the scope of this document.

2 Popular databases

There are two main types of databases: relational databases and
integrated, sometimes called flat file databases. The second type is
pretty easy to understand and deal with, and more common than you
may imagine. These typically consist of a single file that contains the
database and is accessed directly by a software application. This could
be as simple as a comma-separated values (CSV) file, but the most pop-
ular option is SQLite[1]. The web page describes this type of database
nicely:

SQLite is a software library that implements a self-contained,
serverless, zero-configuration, transactional SQL database en-
gine.

Many software applications come with their own built-in database, of-
ten ending with .db. Even your web browser may have a SQLite engine
running in the background to store configuration values. It's a very ef-
ficient and low impact method for dealing with data. But it does have
some drawbacks, namely the fact that you can only access it locally
through a library. There's no way to distribute it across the network
other than manually copying the file, and its performance is bound by
I/O access speeds.



Database administration tutorial for non-DBAs 3

I personally am a big fan of SQLite, but in most real world situations,
the type of database you will need to work with is called Relational
Database Management Systems (RDBMS). There are many popular op-
tions here: Microsoft SQL Server, Oracle Server, MySQL, PostgreSQL,
and IBM DB2. In this tutorial, the examples I will give will focus on
MS SQL Server and MySQL because these seem to be the most popular
options on Windows and Linux respectively. A lot of the same concepts
can be applied to other engines however, and you shouldn't underesti-
mate how popular some of the other choices are. For example, there
are some industries where almost all large corporations rely on Oracle.

Finally, it's worth noting that a popular new type you may have heard
of is the so-called NoSQL databases. These are databases that can be
accessed using other means than the traditional SQL query language,
instead focusing on objects, graphs or documents. They are mostly use-
ful when dealing with big data, and are often found in education fields.
However, they are fairly new and hardly ever found in businesses. We
won't address this type here.

3 Installation considerations

You may never have to install a database engine. If you're already
working as part of an organization, you may find yourself only having
to configure it, or create a new table for a project. If that's the case
feel free to jump right to the appropriate section. But if you're dealing
with a small project, you may have to install the database yourself, and
this section will give you some tips on how to do that.

3.1 Hardware resources

Unlike many other software applications, database engines require a
large amount of forethought before you launch the setup file. Three fac-
tors impact the performance of a database: CPU speed, system mem-
ory, and storage space. It's almost never the case that a database
system goes down in resource requirements, or even stays still. In al-
most every case, you will want your database to have access to more
and more resources as you input more data into it. This is why virtual
machines are so useful when it comes to running databases. That way
you can increase the resources as need be.

Remember that a relational database is a server, and as such it should
be run on proper hardware. The more CPU power you have, the faster



Database administration tutorial for non-DBAs 4

your queries will be run. The more memory, the more data can be kept
in RAM which also speeds queries up. Also consider ECC memory, as
the extra error correction features may ensure better reliability. As for
storage, this is a no-brainer, as the more data you put in the database,
the more disk space you will need.

The minimum requirements can be found online. For example, Mi-
crosoft recommends[2] 6 GB of hard drive space, 1 GB of RAM and a
2 GHz or higher processor. But this is a place you should not skimp
on budget. A good starting point for a mid-range database would be
a 2 GHz 64 bits processor, 16 GB of RAM, and a SAN storage RAID
array. If you do use network storage, then make sure you have a fast
networking setup. Gigabit Ethernet cards are becoming common these
days.

If however you don't have access to such an expensive storage op-
tion, you should really look into a Solid State Drive (SSD) as opposed to
traditional SATA drives. This is because databases are more often disk
bound than CPU bound. There's a good discussion[3] on the StackEx-
change site about database threading and performance.

3.2 Cloud vs on-premise

Another area of concern these days is the option of a cloud setup. You
don't actually have to own your database server, you can instead spin
up a virtual machine on Amazon's AWS, Microsoft Azure or one of the
other cloud options. In many cases, that may be the better option. If
you're working on a short term project, there's no need to spend a lot
of money on hardware. It will likely cost you less to use the cloud. It's
also much faster, you can spin up a virtual machine in a few minutes,
or even use SQL database cloud options directly, such as Google Cloud
SQL.

But the cloud is not always your best bet. If your database will be
critical to your organization, then you may not want to rely on a perfect
Internet connection. If you need to input or output a lot of data, having
the database live in another city may also not be the best for perfor-
mance. Finally, while costs are low for small databases, cloud prices go
up rather fast when dealing with large data sets. You may be better off
with a local option if you need to run it for a long time.



Database administration tutorial for non-DBAs 5

3.3 Running setup

Modern databases can be installed rather easily. For open source
options like MySQL you can also compile the engine from source, but
unless you have specific needs this is usually not worth it. Each Linux
distribution has a MySQL package that takes care of installing each part
of the engine to the proper location along with providing a good starting
configuration. For example, on Ubuntu you can get MySQL installed by
typing:

sudo apt-get install mysql-server

A Windows installation wizard is also available.

If you're just starting and want something quick to follow along, what I
would recommend is that you download MS SQL Server Express[5]. It's
a free version of SQL Server and comes with the graphical management
console. On the download page, make sure you select Express With
Tools, because if you just get the Express download it won't include
any client software and you won't be able to access it.

The installation process usually involves setting up the engine, which
is just a binary that will accept incoming connections, a library which
will handle the queries, support files, and configuration options. Make
sure you write down the information you get during setup, things such
as the port you need to connect to, the administrator (typically called
sa, sysdba or root) user name and password, along with the default
database. One caveat here is that on Windows, there are two different
authentication methods: Windows integrated and SQL authentication
(or mixed, for both methods). In almost all cases, you should never
select just Windows integrated, you should always go for a mixed op-
tion, so clients that don't support Windows integrated can still connect.

Typically, databases run as system services. So after following the
installation wizard, the first thing you should do is go to your services
and make sure the database is running. Some engines give you the
option to run as a normal process, and not as a service. You rarely need
that option, instead running as a service is best. On Windows, you can
access services from the Start menu, Run (or Search for Windows 8)
and by typing:

services.msc

On Linux, you can find it in the process list:

ps -aux | grep mysql



Database administration tutorial for non-DBAs 6

4 Connecting to an instance

Connecting to your database and running queries is a pretty basic
task you will often have to do. Whether you only just finished installing
your own database, or if you've been given an IP address and login
credentials, you need to be able to connect. Here we will see the two
most popular methods for connecting to a database, which is over a
network connection, using a MySQL text-based client, and the MS SQL
Management Studio.

4.1 MySQL Client

While there are graphical frontends for MySQL, most people run this
engine on Linux or Unix systems, and as such use the text-based client.
The default client can be started simply by typing:

mysql

If it's not installed, you will need to find the package for your particular
distribution, such as mysql or mysql-client. By default, it will try to
connect to the local host with your current user name, and ask you for
the password. If all goes well, you should see:

The client binary takes several command line options. For example,
to connect to the remote host db.mycorp.local with the user name root
(which is the default administrator name) type in:

mysql --host=db.mycorp.local --user=root

Note that MySQL also includes a special client for administration pur-
poses called mysqladmin along with other utilities. If you would like to
use a graphical client, I recommend MySQL Workbench[4]. However,
since the text client is far more commonly used, we will focus on that.



Database administration tutorial for non-DBAs 7

4.2 MS SQL Management Studio

If you've installed SQL Server locally then you have the Management
Studio in your Start menu. If not, and you need to connect to a remote
server, you can download it from the same link[5] as the SQL Express
page, but simply select the SQL Server Management Studio Express
option, which will only download the client and not the database engine.

Once you start it, first you will need to log in. Simply enter the
database server, the user name and password. You can also use Win-
dows integrated authentication if you're on an enterprise domain and
whoever set up the database gave you permission. For SQL authenti-
cation, the default name for the administrator is sa.

One important fact to understand here is that you can run more than
one server instance on a single machine. When you installed your
database, you likely used the default instance name such as SQLEX-
PRESS for MS SQL Express, or SQL2008 for MS SQL Server 2008. When
you enter the server name, you may be able to connect with entering
just the host name or IP address, but if more than one instance is run-
ning, you should type in both the host and instance. For example, to
connect to the SQLEXPRESS instance on the local machine, type in:

localhost\SQLEXPRESS

If all went well, you should be greeted with a list of database objects:



Database administration tutorial for non-DBAs 8

4.3 Alternative connection methods

It's important to understand that most modern databases offer more
than just network login options. In fact, there are many ways to interact
with a database. An application may access the database's API directly
through a library, it may use what's called a named pipe, or it may use
the Open Database Connectivity (ODBC)[6] standard. If you're trying to
setup a database for a development team, chances are ODBC is actually
how they will end up connecting, so you need to be aware of it.

ODBC is a way to access a database through a common protocol. It
uses drivers in order to link the application's own code to the database
engine. On Windows, you can access those drivers by launching the
odbcad32 binary. There, you will see the installed drivers along with
some configuration options. You can install an ODBC connector in or-
der to access a database remotely, and that connector will handle all
the necessary work for the application. Even a Linux application can
connect to a MS SQL Server database using the ODBC connector that
Microsoft provides.

5 Creating and selecting databases

Now that you know how to install an engine and connect to it, it's
time to learn basic SQL queries. We'll first learn how to list databases,
use one, list tables, and query those tables. Each database instance
can contain any number of databases. Typically, you will want to create
a new database for each project. Each database can then contain any
number of tables, which in turn contain columns and rows containing
data.

5.1 MySQL

In the MySQL client, you can get a list of databases by typing:

SHOW DATABASES;

Notice how SQL queries always end with a ; character, and key words
are capitalized, although that isn't a requirement. The databases you're
likely to see are all system databases containing system information,
users, and so on. To select a database, you will need to type the USE
keyword with the name of the database:



Database administration tutorial for non-DBAs 9

USE mysql;

Then, you can list tables with:

SHOW TABLES;

From there on, you have selected a database and know the table
names. You can start using standard SQL queries to interact with that
data, which we will do in the next section. First however, let's create a
database of our own to run further tests:

CREATE DATABASE tests; USE tests;

5.2 SQL Server

If you're working with the SQL Server Management Studio, then ev-
erything is far more visual. On the left side, you can see the list of
databases. You can expand it, and then select a specific database. The
system databases are in their own container. Once expanded, you can
see a list of tables. System tables are separated from normal ones, and
should usually not be touched directly.

The management studio has two ways to interact with data. If you
right click on an object on the left pane, you can see a couple of useful
functions. For example, right clicking on a table will give you the options
to Select Top 1000 Rows and Edit Top 200 Rows. This can be useful
to quickly get an at-a-glance view of the data. If you want to enter a
specific SQL query however, simply click the New Query button on the
toolbar.

Before continuing, let's create a new database for us to use. Right
click on the top level Databases object and select New Database. Call
it tests, then expand it to see the objects inside of it. You can see quite
a few items were made by default, and we'll touch on those later on.

6 SQL Queries

Now that you have your database and know how to select it, you need
basic SQL knowledge in order to work with data. If your role is only to
create the database for someone else to use, you may not need to do
a lot of data manipulation. In fact, more often than not, an application
is going to do the actual queries. But it's still important to know basic
queries in order to browse the database and troubleshoot any issue.



Database administration tutorial for non-DBAs 10

6.1 Tables and data types

The first thing to understand about tables is that they are two-dimensional.
Think of a database table like a spreadsheet, with columns and rows.
Before you can store data, you have to define the columns and the type
of data that can go in them. This is called the schema, or the blueprint of
how your data is going to be structured. This is key to SQL databases,
and what distinguishes them from NoSQL or other schema-free data
storage engines. A traditional RDBMS requires a structure before you
can enter data.

When you create a table, one thing you need to define is not only
column titles, but also what kind of data these columns will accept. So
before making our first table, let's see the more common data types:

Data Type Description
varchar(n) Variable string of n characters
char(n) Fixed string of n characters
varbinary(n) Variable binary value of n bytes
binary(n) Fixed binary value of n bytes
tinyint Integer number of 1 byte
smallint Integer number of 2 bytes
int Integer number of 4 bytes
bigint Integer number of 8 bytes
float A floating point number
date A date value formatted YYYY-MM-DD
time A time value formatted HH:MM:SS

Note that these data types apply to both MS SQL Server and MySQL,
along with most RDBMS servers out there. Of course there are a lot
more possible data types, but they vary a lot between engines. For
example, the text type is actually similar to varchar(max) in MySQL,
except that the actual data is stored as a reference pointer rather than
inline, whereas MS SQL Server has deprecated text and recommends
against using it.

There are two other useful tidbits of information to know before we
make a table. First, tables have indexes such as the primary key which
speeds up queries. The only constraint is that each value of the key
must be unique. Most databases can use an internal structure as pri-
mary key, or you can define it yourself. The second piece of information
is the concept of a null value. When querying a table, we need a way



Database administration tutorial for non-DBAs 11

to distinguish between an empty value and whether the value is unde-
fined, and this is where null comes in. You can specify whether a value
has to be defined or not when you create your table.

So now that we have some basic data types, let's create a table. If you
want to follow along, make sure you have your tests database selected
and type the following SQL query:

CREATE TABLE users (id int NOT NULL PRIMARY KEY, name varchar(255)
NOT NULL, age smallint, email varchar(255), note varchar(255));

Here, we're creating a table named users with five columns. The first
will have the column name id, be of data type int, be a primary key for
the table, and each row will have to be defined. The next column is
called name and be a variable length string up to 255 characters. Each
row will also require the name to be set. The next column is called age
and be a 2 bytes integer. The next ones are email and note. Remember
that the order is also important, just like the order of a spreadsheet
typically matters.

Let's create one more table, this time containing a list of projects
with the columns title for the project title, owner for the user owning
the project, summary for a project summary, and finally due_date for
the date the project is due:

CREATE TABLE projects (title varchar(255) NOT NULL, owner int NOT
NULL, summary varchar(1000), due_date date);

If you use the SHOW TABLES command again, or refresh the left pane
in MS SQL Server Management Studio, you should see your two new
tables.

6.2 Inserting data

Now that our structure is done, we can start inserting data. This is
done with the INSERT keyword, like this:

INSERT INTO users VALUES (1, 'John Doe', 28, 'johndoe@corp.local',
'');

This will be our first user with id being 1, the name is John Doe, an
age of 28, an email of johndoe@corp.local, and an empty note. As you
can see, strings should always be between quotes. Note that you may
get an error in SQL Server Management Studio, since Microsoft uses
brackets to define objects. You may need to replace users for its full
name: [tests].[dbo].[users]. Also, be sure you use single quotes, as



Database administration tutorial for non-DBAs 12

double quotes will not work inside of Management Studio.

But you don't always need to enter every column, you can specify
which fields you insert data into. Let's enter a second user:

INSERT INTO users (id, name, age) VALUES (2, 'Mary Rose', 36);

As you can see, here we add a row but only define a couple of columns.
We can do this because the missing rows don't have the NOT NULL argu-
ment.

6.3 Selecting data

To display the data we entered, we can use the SELECT keyword. Here
is how you can list everything inside of a table:

SELECT * FROM users;

Once again, make sure you replace this with the following if you use
the SQL Server Management Console:

SELECT * FROM [tests].[dbo].[users];

If the previous commands were successful, you should see a nice
spreadsheet with our data if you use a graphical interface, or the fol-
lowing inside the text-based MySQL client:

mysql> SELECT * FROM users;
+----+-----------+------+--------------------+------+
| id | name | age | email | note |
+----+-----------+------+--------------------+------+
| 1 | John Doe | 28 | johndoe@corp.local | |
| 2 | Mary Rose | 36 | NULL | NULL |
+----+-----------+------+--------------------+------+
2 rows in set (0.00 sec)

As you can see, both users are displayed. You may also notice the
notes are different. For the first user, we entered an empty string,
but for the second user, we didn't even specify anything, so it's left
undefined. Of course, you can also select only specific columns:

SELECT id, name, age FROM users;

This can be useful if your table has a lot of columns. Finally, you can
also specify conditions with the WHERE keyword. The following statement
will select only users with an age of 28:



Database administration tutorial for non-DBAs 13

SELECT * FROM users WHERE age = 28;

This statement will select entries that have an id below 3:

SELECT * FROM users WHERE id < 3;

This next statement will select users with the name Mary Rose aged
above 30:

SELECT * FROM users WHERE name = 'Mary Rose' AND age > 30;

Finally, this statement will select users that have an email defined:

SELECT * FROM users WHERE note IS NOT NULL;

As you can see, these statements are very similar to the English lan-
guage and easy to remember. There are quite a bit more permutations
we could do, but this should allow you to do basic querying.

6.4 Updating data

You can of course update data already inserted with the UPDATE com-
mand. Here, we will define a note and email for our second user:

UPDATE users SET email = '', note = '' WHERE id = 2;

Let's also assign an actual note to all users. This should update both
rows since we don't add any condition:

UPDATE users SET note = 'Part of the corporation.';

6.5 Deleting data

The final task you often find yourself having to do, especially after
doing tests, is deleting data from tables with DELETE, or entire tables
and databases with DROP. Obviously, use these commands carefully. This
query will delete any entry in our table where the email is empty:

DELETE FROM users WHERE email = '';

This will delete every entry from the table:

DELETE FROM users;

This will delete the actual table:



Database administration tutorial for non-DBAs 14

DROP TABLE users;

And finally, this will delete the entire database:

DROP DATABASE tests;

There are many more SQL commands out there, but for administra-
tion purposes, you now know the basics necessary to create databases,
tables, inserting data, updating that data, and querying it. If you're
interested in more, I recommend the W3Schools[7] site which contains
a full list of SQL commands along with examples.

7 Logins and users

Now that we know how databases work and how to interact with data,
we will cover a few useful administration topics that you may have to
deal with as a non-DBA database expert, starting with access control.

So far, we've logged in as the administrator to our database, but that
is quite dangerous. As you saw, we can delete entire databases with a
single command. In normal operation, you want to restrict access more
than that. You certainly don't want to give full access to a team if they
only need a single database. This is where the concept of users comes
in.

Users are handled differently between database engines. MS SQL
Server, for example, has the concept of logins for access to the database
server, and users, which are specific to a single database. In MySQL,
you only create users, but specify where they can connect from. In both
cases, you can interact directly with the system tables to add users, but
it's preferable to use the designated interface to do it instead.

7.1 MySQL

In MySQL, you create a user with the following command:

CREATE USER 'name'@'%' IDENTIFIED BY 'password';

This will create a new user with the name name and the specified
password. Note that here we specify that this user can connect from
any host. If you want to restrict access to just a specific IP address,
you would replace % with the one you want.



Database administration tutorial for non-DBAs 15

Once a user is created, you need to grant access with the GRANT com-
mand. The following command will grant our new user access to all
tables of the tests database:

GRANT ALL PRIVILEGES ON tests.* TO 'name'@'%';

If instead we only want the user to be able to query and update data,
but not insert or do other modifications on the database, we can use
this statement:

GRANT SELECT,UPDATE ON tests.* TO 'name'@'%';

Finally, let's see the privileges that the root user has:

SHOW GRANTS FOR 'root'@'localhost';

You may notice that the root user actually only has access from the
local host. Adding proper permissions to users is key to ensure security
for your database. If you ever need to modify an existing user, you can
do so with the ALTER USER command. For example, this command will
expire the password:

ALTER USER 'name'@'%' PASSWORD EXPIRE;

This will force the user to enter a new password with the SET PASSWORD
command or be stuck in restricted mode.

7.2 SQL Server

In SQL Server, logins live under the Security top level branch on the
left side of the Management Studio. Simply expand the container to
see all current logins, and right click on it to create a new login. You
will see that there are quite a few options you can define on that dialog.
First, you can select whether you need a SQL authentication login, or a
Windows integrated login. For SQL authenticated logins you will need
to input a password, and then should define the default database.

Once you have a new login, you need to map it to a user. Go to the
database you need this user to access, and inside of that container, you
will find another container called Security. In there, you can find the list
of users, or if you right click again, create a new user. Here you enter a
name, and select which login is mapped to it. You can also select what
permission this user will have such as reading data, writing data, and
so on.



Database administration tutorial for non-DBAs 16

8 Server logs

When things break, the first thing you will typically want to do is look
at server logs to find out what happened. Obviously, in order to do
that you need to know how to access and make sense of them. All
RDBMS can write error logs, but they aren't always enabled by default.
For example, on Linux MySQL writes logs to the console, which is not
particularly helpful. To have log files, you need to specify the file where
to send them with the --logerror=filename option when you start the
server.

On Windows, both MySQL and SQL Server write logs to the Event
Viewer. You can also access logs from within Management Studio.
These can be useful if the server process crashed, or some other strange
behavior occurred with the actual instance. But if you're trying to find
out what went wrong with specific queries, either from a user manually
typing them in or from an application that failed somehow, then you
may need what's called a general SQL query log.

MySQL is able to create a query log with the --log=filename option
when you start the server. SQL Server however doesn't save them by
default, unless you're willing to dig into the server cache, but several
third party options exists. A popular one is the SSMS Tools Pack[8].



Database administration tutorial for non-DBAs 17

Another useful type of log is a session log. In SQL Server Manage-
ment Studio, if you right click on the server name, then select Reports
and then Standard Reports, you can see a list of all activity on the
server, such as who connected, which applications, how much time
their queries took, and so on.

Finally, as your database system grows, consider running audits. This
may allow you to find problems before they happen. SQL Server has
audits built into the interface, while MySQL comes with a plugin called
audit_log that you can use.

9 Backups

When the worst happen, even logs may not help you. That's why you
need backups. There are many different ways to do backups. Some
people like to do a backup of the entire system (or VM), others like to
use specialized tools to back the database up, or even scripts to run
BACKUP commands. The way you do it is up to you, but there are a few
things you should know.

First, backups are pointless if you don't know how to restore them.
Never trust a backup solution until you tried restoring it. You can create
a test system where you will test your backups and make sure they can
be restored promptly. Also, never keep your backups locally. The best
scenario is to put them on a network file share, and then also keep a
copy off site. Finally, use a scheduling solution, because doing manual
backups is not a good idea. Human beings forget.

9.1 MySQL

One of the area where Oracle makes money with MySQL is by offering
an Enterprise version that includes more than the basic utilities you get
in the community edition. This includes the MySQL Enterprise Backup.
If you use the free version, you can still do backups using the mysqldump
utility. This is probably the easiest way to do it, since all the utility does
is output a list of CREATE and INSERT statements that you can use later
on to recreate data. This shell command would make a manual backup
of the tests database:

mysqldump -u root -ppassword tests > backup.sql

Then, you simply need to import the file as a list of SQL queries with



Database administration tutorial for non-DBAs 18

the client in order to restore it:

mysql -u root -ppassword tests < backup.sql

The advantage of a professional solution is that it can make incre-
mental backups, hot backups, do selective restores, and so on. This is
far more flexible than using a script, and if you can spend the money
for it, I would suggest doing so.

9.2 SQL Server

In the SQL Server Management Studio, if you expand the Manage-
ment container, you will find the Maintenance Plans section. This can
be used to set scheduled tasks such as performance indexing, integrity
checks, and backups. Right click on it and select Maintenance Plan Wiz-
ard. This can guide you to creating a backup. You can select to do a full
backup, a partial one, or just the transaction log. You can then select
a single database or all of them, and when the backup will run. This is
a very easy way to make backups of your SQL Server.

If you prefer, you can also do backups of the entire virtual machine.
There are many paid options for that, or you can use the features
that come with your virtual machine hypervisor. One popular option
is Veeam Free Edition[9], but many others exist.

10 Conclusion

In this tutorial, we've covered the basics of administrating a database
server, focusing on two of the most popular engines, MySQL and Mi-
crosoft SQL Server. The realm of the DBA is of course much more vast,
including topics such as scaling, clustering, reporting, disaster recov-
ery, database optimization, server instancing, data profiling, and more.
Reading through this document doesn't make you an expert DBA, and
won't make you pass any certification, but hopefully by now you realize
that handling a database isn't that complicated.

Whether you need to create a database for a personal project, collect
data from a team project, handle requests from co-workers, or deal
with data in a more structured way, you should now have the skills to
select a database engine, install it, query it and administer it. We've
reviewed the most important concepts for dealing with databases, and
you can certainly stop here, but if you want to expand your knowledge,



Database administration tutorial for non-DBAs 19

there are many free online resources, and many sites with a community
where you can ask questions such as the DBA StackExchange[10].

Whether you run a single flat-file SQLite database, or a clustered en-
terprise solution on hundreds of nodes, the same concepts we covered
will hopefully help you in your day to day activities.

11 References

References

[1] SQLite: A self-contained SQL database engine
http://www.sqlite.org/

[2] MS SQL Server 2014: Hardware and software requirements
http://msdn.microsoft.com/en-us/library/ms143506.aspx

[3] StackExchange: About single threaded versus multithreaded
databases performance
http://dba.stackexchange.com/questions/2918/
about-single-threaded-versus-multithreaded-databases-performance

[4] MySQL: MySQL Workbench Download
http://dev.mysql.com/downloads/workbench

[5] Microsoft: Microsoft SQL Server 2014 Express
http://msdn.microsoft.com/en-ca/evalcenter/dn434042.aspx

[6] Wikipedia: Open Database Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity

[7] W3Schools: SQL Tutorial
http://www.w3schools.com/sql/

[8] SSMS: Tools Pack
http://www.ssmstoolspack.com/

[9] Veeam: Veeam Backup Free Edition
http://www.veeam.com/virtual-machine-backup-solution-free.html

[10] StackExchange: DBA
http://dba.stackexchange.com/

http://www.sqlite.org/
http://msdn.microsoft.com/en-us/library/ms143506.aspx
http://dba.stackexchange.com/questions/2918/about-single-threaded-versus-multithreaded-databases-performance
http://dba.stackexchange.com/questions/2918/about-single-threaded-versus-multithreaded-databases-performance
http://dev.mysql.com/downloads/workbench
http://msdn.microsoft.com/en-ca/evalcenter/dn434042.aspx
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://www.w3schools.com/sql/
http://www.ssmstoolspack.com/
http://www.veeam.com/virtual-machine-backup-solution-free.html
http://dba.stackexchange.com/

	Introduction
	Audience
	Disclaimer

	Popular databases
	Installation considerations
	Hardware resources
	Cloud vs on-premise
	Running setup

	Connecting to an instance
	MySQL Client
	MS SQL Management Studio
	Alternative connection methods

	Creating and selecting databases
	MySQL
	SQL Server

	SQL Queries
	Tables and data types
	Inserting data
	Selecting data
	Updating data
	Deleting data

	Logins and users
	MySQL
	SQL Server

	Server logs
	Backups
	MySQL
	SQL Server

	Conclusion
	References

